Testing the response of wheat models to heat stress at anthesis and grain filling

Yan Zhu¹, Bing Liu¹-², Senthold Asseng², Leilei Liu¹, Xiudong Zou¹, and Weixing Cao¹

¹National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, China. Email: yanzhu@njau.edu.cn

²Department of Agricultural and Biological Engineering, University of Florida, USA
Crop models for assessing climate impacts on crop production.

However, uncertainties of crop models have been reported, especially under extreme high temperature.

Objective:

To evaluate the response of wheat models to heat stress at anthesis and grain filling stages and identify gaps for crop model improvement.
Methods

Environmental controlled phytotron experiments

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Growing season</th>
<th>Site</th>
<th>Starting time of treatment</th>
<th>Duration</th>
<th>Temperature regime ($T_{\text{min}}/T_{\text{max}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yangmai16</td>
<td>2010-2011</td>
<td>Nanjing</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d)</td>
<td>T1 (17°C/27°C), T2 (21°C/31°C), T3 (25°C/35°C), T4 (29°C/39°C)</td>
</tr>
<tr>
<td></td>
<td>2011-2012</td>
<td>Nanjing</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d)</td>
<td>T1 (17°C/27°C), T2 (21°C/31°C), T3 (25°C/35°C), T4 (29°C/39°C)</td>
</tr>
<tr>
<td></td>
<td>2012-2013</td>
<td>Nanjing</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d)</td>
<td>T1 (17°C/27°C), T2 (21°C/31°C), T3 (25°C/35°C), T4 (29°C/39°C)</td>
</tr>
<tr>
<td>Xumai30</td>
<td>2013-2014</td>
<td>Rugao</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d), D3 (9d)</td>
<td>T1 (17°C/27°C), T3 (25°C/35°C), T4 (29°C/39°C), T5 (33°C/43°C)</td>
</tr>
<tr>
<td></td>
<td>2011-2012</td>
<td>Nanjing</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d)</td>
<td>T1 (17°C/27°C), T2 (21°C/31°C), T3 (25°C/35°C), T4 (29°C/39°C)</td>
</tr>
<tr>
<td></td>
<td>2012-2013</td>
<td>Nanjing</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d)</td>
<td>T1 (17°C/27°C), T2 (21°C/31°C), T3 (25°C/35°C), T4 (29°C/39°C)</td>
</tr>
<tr>
<td></td>
<td>2013-2014</td>
<td>Rugao</td>
<td>Anthesis, Grain filling</td>
<td>D1 (3d), D2 (6d), D3 (9d)</td>
<td>T1 (17°C/27°C), T3 (25°C/35°C), T4 (29°C/39°C), T5 (33°C/43°C)</td>
</tr>
</tbody>
</table>
Methods

- **Wheat crop models:**
 1. DSSAT-CERES-Wheat
 2. DSSAT-Nwheat
 3. APSIM-Wheat
 4. WheatGrow

- **HDD**: degree days above 30°C
Results - Grain filling duration

- **Cultivar:**
 - ○ Yangmai16
 - △ Xumai30
Results - Total above-ground biomass

<table>
<thead>
<tr>
<th>Observed</th>
<th>Simulations</th>
</tr>
</thead>
</table>

Cultivar: ○ Yangmai16 ▲ Xumai30
Results - Leaf area index (LAI) dynamic

Observed = symbols Simulation = lines
Results - Grain yield

Observed | Simulations ...

Cultivar: ○ Yangmai16 △ Xumai30
Results - Grain number

Cultivar: ○ Yangmai16 △ Xumai30
Results - Grain size

Observed | Simulations ...

Cultivar: ○ Yangmai16 △ Xumai30
Conclusions

- Heat stress at anthesis reduced observed grain numbers and grain size, while heat stress during grain filling mainly decreased the grain size.

- The tested 4 models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass and grain yield due to heat stress.

- Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis.

- Some of models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis.

- The observed genetic variability in wheat response to heat stress needs to be considered in future simulation studies.