Filling caveats in yield gap analysis

Martin van Ittersum

René Schils – Wopke van der Werf – Gou Fang - Gerrie van de Ven - Aart van der Linden – Lotte Woittiez – Tiemen Rhebergen - Meine van Noordwijk

Groups ¹Plant Production Systems, ²Crop Systems Analysis and ³Animal Production Systems
Production ecological principles

Why yield gap analysis

- Benchmark land productivity
- Identify regions with unlocked yield capacity
- Benchmark resource (incl. water) use efficiencies
- Identify regional causes of yield gaps
- Develop options to reduce yield gaps and/or improve RUEs
Global Yield Gap Atlas

With University of Nebraska, ICRISAT, AfricaRice, CIMMYT and many regional and national partners:

- Major food crops in the world
- Global protocol with local application
- Local data and evaluation
- Strong agronomic foundation

www.yieldgap.org
Yield gap analysis: protocol

- Climate zones
- Crop-specific harvested areas
- Weather station buffer zones
- Soil types and cropping systems
- Crop model simulations
- Actual yields
- Yield gaps

Grassini et al., 2015; Van Bussel et al., 2015, Field Crops Research
Relevance of strip intercropping in the world

- Maize/potato
- Maize/bean
- Wheat/maize
- Wheat/buckwheat
- Wheat/millet
- Wheat/tobacco
- Wheat/soybean
- Maize/soybean
- Maize/peanut
- Maize/potato
- Wheat/broomcorn millet
- Maize/potato
- Maize/bean
- Wheat/maize
- Wheat/cotton
- Wheat/garlic

Maize/bean (sorghum) in rotation with wheat
Maize/potato/wheat
Wheat in rotation with maize/soybean
Maize/beans in rotation with wheat
Maize/wheat
Wheat in rotation with maize/sesame
Maize/sweet potato

Mean LER = 1.22

(Knörzer et al., 2009 and Yu et al., 2015)
Land equivalent ratio

\[LER = pLER_w + pLER_m = \frac{Y_w}{M_w} + \frac{Y_m}{M_m} \]

![Graph showing LER for different crops and years with respective data points for 2013 and 2014.](image)

Strip intercrop model

See poster: Fang Gou, Martin K. van Ittersum, Wopke van der Werf

Simulating potential growth in a relay-strip intercropping system: model description, calibration and testing
Yield gaps of perennial crops
Fig. 1. Schematic overview of PALMSIM. Dashed boxes represent standing biomass.
‘Yield gap analysis’ for Livestock systems

Van Ittersum and Rabbinge, 1997; Van de Ven et al, 2003;
Van der Linden et al., 2015
Yield gap – beef production

Breed: Charolais
Climate: France

Diet under potential production: 65% wheat, 35% hay, *ad libitum*

Diet under feed-limited production: Grass-based, 5% barley, *ad libitum*

Van der Linden et al., Agricultural Systems, 2015
Yield gap – beef production

Van der Linden et al., Agricultural Systems, 2015
Yield gap analysis for crop-livestock systems

5% concentrates, 95% grass-based

Feed efficiency (kg beef t⁻¹ DM feed)

60
50
40
30
20
10
0

0 2 4 6 8 10 12

Feed crop production (t DM ha⁻¹ year⁻¹)

Yield gap

631 kg beef ha⁻¹ year⁻¹

133 kg beef ha⁻¹ year⁻¹

18% concentrates, 82% grass-based

Feed efficiency (kg beef t⁻¹ DM feed)

60
50
40
30
20
10
0

0 2 4 6 8 10 12

Feed crop production (t DM ha⁻¹ year⁻¹)

Yield gap

634 kg beef ha⁻¹ year⁻¹

180 kg beef ha⁻¹ year⁻¹

Data: Reseaux d’Elevage Charolais, 2012

Van der Linden et al., 2015
Thank you!

Future harvest

© http://www.riennijboer.nl/